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S u m m a ~  

An inert compressible gas confined between infinite parallel planar walls is subjected to significant heat addition 
at the boundaries. The wall temperature is increased during an interval which is scaled by the acoustic time of the 
container, defined as the passage time of an acoustic wave across the slab. On this time scale heat transfer to the 
gas occurs in thin conductive boundary layers adjacent to the walls. Temperature increases in these layers cause 
the gas to expand such that a finite velocity exists at the boundary-layer edge. This mechanical effect, which is 
like a time-varying piston motion, induces a planar linear acoustic field in the basically adiabatic core of the slab. 
A spatially homogeneous pressure rise and a bulk velocity field evolve in the core as the result of repeated 
passage of weak compression waves through the gas. Eventually the thickness of the conduction boundary layers 
is a significant fraction of the slab width. This occurs on the condition time scale of the slab which is typically a 
factor of 106 larger than the acoustic time. The further evolution of the thermomechanical response of the gas is 
dominated by a conductive-convective balance throughout the slab. The evolving spatially-dependent tempera- 
ture distribution is affected by the homogeneous pressure rise (compressive heating) and by the deformation 
process occurring in the confined gas. Superimposed on this relatively slowly-varying conduction-dominated field 
is an acoustic field which is the descendent of that generated on the shorter time scale. The short-time-scale 
acoustic waves are distorted as !hey propagate through a slowly-varying inhomogeneous gas in a finite space. 
Solutions are developed in terms of asymptotic expansions valid when the ratio of the acoustic to conduction 
time scales is small. The results provide an explicit expression for the piston analogy of boundary heat addition. 

1. Introduction 

W h e n  ene rgy  is a d d e d  to a c o m p r e s s i b l e  gas  at  a b o u n d a r y  o r  w i th in  the  ma te r i a l  i tself  

o n e  can  expec t  to  obse rve  a m e c h a n i c a l  response .  T h e  t e m p e r a t u r e  r ise a s soc ia t ed  wi th  

h e a t  a d d i t i o n  causes  a loca l i zed  g a s - e x p a n s i o n  p rocess  wh ich  in t u r n  can  g e n e r a t e  acous t i c  

effects .  L o r d  R a y l e i g h  [1] p r o v i d e d  an  ear ly  a c c o u n t  o f  acous t i c  w a v e  g e n e r a t i o n  in a 

c o n f i n e d  gas  due  to a smal l  i m p u l s i v e  inc rease  in b o u n d a r y  t empe ra tu r e .  A l inear ized  

e n e r g y  e q u a t i o n  was  de r ived  by  a s s u m i n g  tha t  d i s t u rbances  were  smal l  a n d  tha t  the  

t r ans i en t  p re s su re  r e sponse  was  spa t ia l ly  h o m o g e n e o u s .  Bet te r  m o d e l l i n g  o f  the  i n t e r a c t i o n  
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between slow conduction-dominated thermal effects and the much faster acoustic mecha- 
nical processes requires a systematic examination of the complete equations for a viscous, 
heat-conducting compressible gas. Wu [2] studied linear disturbances generated in a gas by 
distributed sources of energy and /o r  forces. He demonstrated that a small conduction- 
dominated region would form around an impulsive concentrated heat source. Acoustic 
waves are generated a short time later by the localized gas expansion. There is a 
conceptual limitation in Wu's theory.because heat is added instantaneously relative to a 
characteristic time % which is in fact the mean time between molecular collisions. This can 
be accomplished only with a radiative source. Subsequent gas expansion can occur only 
after many multiples of % have elapsed during which heat added at the source is 
conducted (a result of many energy exchanging molecular collisions) into a localized 
neighbouring volume of material. In this sense Wu's solutions for times less than % have 
no physical meaning. 

Trilling [3] described the character of a linear acoustic field in a semi-infinite space 
induced by a small impulsive temperature increase at the origin. The complete linearized 
equations are used in the mathematical model. Here again the spatial dimension and the 
time are scaled with respect to the mean free path and collision time respectively, while the 
boundary-temperature rise is instantaneous on the latter scale. As a result, the short-time 
solution, which is supposed to describe the conduction-dominated heat transfer adjacent 
to the boundary, is of questionable validity because the interval is too limited for energy 
exchange by collisions. Related studies, emphasizing the effects of conductivity and 
viscosity on acoustic wave propagation, have been carried out by Knudsen [4] and by 
Luikov and Berkoresky [5]. 

Pressure waves generated by a heat source in an inviscid, nonconducting gas were 
considered by Chu [6]. The actual mechanism of wave generation is absent, because 
conductive energy transport is not available to heat up a local volume of gas leading to 
bulk expansion. Rather, Chu derives a formal statement relating the heat addition to an 
effective piston speed. This piston analogy is then used to construct a linear theory of 
wave propagation valid for small piston Mach numbers. In physical terms this limitation 
requires that the energy addition per unit mass be small compared to the initial thermal 
energy in the region of interest. Shock-wave generation associated with more significant 
continuous heat addition is also considered. 

Larkin [7], Thuraisamy [8], Spradley et al. [9] and Spradley and Churchill [10] have 
computed the gas motion induced in a slab-like container when the temperature on 
one-boundary is raised impulsively while the other is held at the initial temperature of the 
system. The general nonlinear conservation equations, ignoring viscous dissipation, are 
used as the basis of the study. The numerical solutions resolve the passage of acoustic 
waves across the slab during the early phase of the process. Larkin and Thuraisamy find 
wave amplitudes ten times larger than Spradley et al. which the latter attribute to 
unspecified numerical difficulties. The difficulty probably occurs because the spatial 
resolution used is not fine enough to resolve the conduction-dominated boundary layer 
adjacent to the heated wall on the acoustic time scale of the slab. If the gas expansion 
process in the boundary layer is not described accurately then the acoustic waves 
generated will be equally in error. For larger values of the time (measured with respect to 
the acoustic passage time across the slab) the pressure is found to be a spatially 
homogeneous increasing function of time. The effect of bulk motion induced into the gas 
by repeated passage of acoustic waves is to speed the approach to an equilibrium 
temperature distribution relative to that in a rigid conducting material. It is difficult to 
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assess the accuracy of these solutions because it is unclear if the numerical methods have 
resolved both the diffusive thermal processes and the wave-like acoustic effects occuring at 
the same time. 

Kassoy [11] has calculated the response of an inert perfect gas confined in a slab to a 
boundary-temperature increase occurring over the conduction-time scale t~ of the con- 
tainer. The earliest phase of the process takes place on the acoustic time scale t~, where 
t~ = O(10 -6 t~,). Thin conductive boundary layers appear adjacent to each wall where the 
temperature rises continuously, although the change in size is small. The expanding gas in 
the boundary layer acts like an effective piston, driving linear compressive waves into the 
core of the slab. Repeated passage of the continuously generated acoustic field causes a 
small bulk velocity and a spatially homogeneous compression to develop. Eventually the 
time becomes large relative to t~ and conductive effects spread into the interior of the 
slab. The subsequent heat-transfer process develops on the scale of t~. During this longer 
period the bulk gas velocity is small but must be retained in the basic nonlinear 
mass-conservation and energy equations. Superimposed on the slowly-varying 
conduction-dominated solutions, the previously generated acoustic waves continue to 
evolve in a linear fashion. As they propagate through the inhomogeneous (variable-tem- 
perature) material, they prevent the development of any spatial pressure gradients. As a 
result the spatially homogeneous pressure increase can be calculated in terms of a spatial 
integral of the temperature distribution. These conceptual arguments are developed from a 
systematic study of distinguished limits of the complete Navier-Stokes equations based on 
an asymptotic analysis when t~/t" << O(1). Numerical solutions for the conduction- 
dominated heat transfer process are given by Radhwan [12]. 

There are a variety of fascinating related thermoacoustic phenomena that occur in 
interior and exterior flows and which frequently play a role in noise generation. Some of 
the literature is described in [11] and [12] and in the monograph article by Rott [13]. In 
addition Vincenti and Traugott [14] have described the mechanical response of a gas to 
radiative heat transfer. 

In the present work, the concepts developed in [11] are employed to study the 
mechanical response of a gas in a slab when boundary heating occurs on the acoustic-time 
scale of the container. During that period the energy addition at the boundary is O (10 6) 
larger than that considered in [11]. As a result the acoustic field generated by the 
boundary-layer gas expansion is a similar factor larger. In fact the velocity field associated 
with the acoustic process is a factor of 10 3 larger than that associated with bulk gas 
deformation during the longer conduction-dominated process. The acoustic field retains 
its linear character because the power added at the boundary is not large enough to drive 
an acoustic wave front which becomes nonlinear within the finite dimension of the slab. 
Numerical solutions for the nonlinear heat-transfer process, which includes gas deforma- 
tion, are obtained to show how the system relaxes to the final steady state. Flow reversal is 
observed as density variations are smoothed out. 

2. Mathematical model 

The mathematical model must be capable of describing the thermomechanical response of 
a perfect gas confined in a slab to a wall temperature disturbance occuring on the acoustic 
time scale of the container, see Fig. 1. The slab walls are assumed to be conducting and 
rigid and the spacing between them is L' (primes denote dimensional quantities). The gas 
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Figure 1. The geometrical configuration of the slab-shaped container. 

is initially at rest and in an equilibrium thermodynamic state defined by the pressure pr, 
t v ~ t  _ r / 2 .  p the density, Po and temperature T~. The conduction time scale is defined as t ¢ -  L /~0 

where r~ is the thermal diffusivity of the gas in the reference state. The acoustic time scale 
is t~ = L ' / C ~ ,  where C~ = ('yRT~) 1/2 is the speed of sound, "y is the constant ratio of 
specific heats and R is the gas constant. The small perturbation parameter is ~ = t'A Pr / t "  
where Pr is the Prandtl number of the initial state. 

The dimensionless equations for a compressible, viscous, conducting, inert, perfect gas 
can be written [11] as 

p , + ( p u ) x = 0  , (1) 

p = p T ,  (2) 

p (  U t "~ UUx) = - - ' y -  lpx + ,(4/3)(/tux)~, (3) 

PCo [ 7  ( kT~)x  +(4 /a )71z (ux )2]  
(~/~-1) (Tt + uT~) = - p u  x + ,  (7 ---'l)Pr (4) 

where the subscripts t and x denote partial derivatives and 

p = p ' /p~ ,  p = p ' / p ~ ,  r = T ' / T ~ ,  u = u /Cd ,  

t = t ' / t ~ ,  x = x ' / L ' ,  (5) 

- -  v t / v 

I z - # / 1 ~ o ,  C o = C ' /C 'o ,  k = k ' / k ' o  (6) 

The viscosity, specific heat at constant volume and thermal conductivity 

/z =/z(T) ,  C o = C o ( T ) ,  k = k ( T ) ,  (7) 
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respectively are arbitrary functions of temperature. The equilibrium initial conditions are 

t = 0 ;  T = o = p = l ,  u = 0 ,  0 ~ < x ~ l .  (8) 

The wall temperature is assumed to increase on the acoustic-time scale and the normal 
velocity there is zero: 

x = 0 , 1 ;  T = l + O ( t ) ,  u = 0 ,  t > 0 .  (9) 

Here dQ/dt=O(1) and Q(0)=0. The solutions are found in terms of asymptotic 
expansions based on the limit ~ --+ 0. 

3. Acoustic-time solutions 

The wall temperature is raised by an O(1) amount during an interval measured by the 
acoustic time scale. Only a thin layer of gas adjacent to the boundary will be affected by 
conductive heat transfer. Beyond that conductive region disturbances can arise only from 
mechanical coupling with the heated, expanding gas next to the wall. In order to model 
these conceptual ideas solutions must be developed in a thin conductive boundary layer 
and in a nearly isentropic core. 

3a. The boundary layer 

As a result of the O(1) wall temperature change there will be a similar spatial variation 
across the boundary layer. The boundary-layer variables near x = 0 can be written as 

T= T, p=~, p=p,  x={l/2z, u=~l/2a (10) 

where the scalings have been chosen to produce a balance of conductive and convective 
energy transport. Then (1)-(4) become 

p=~¢, 

t~Co (~, + fi~z) = _pfi _+ _-Y]) pr (kT",) ~ + ,4yt* (fi~)2. 
(r 

(11) 

(12) 

(13) 

A simpler form of this system, obtained by employing the Lagrangian transformation 

y = f0Z~(s, t)ds, (as) 

(14) 
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can be written as 

~6, = (~6)2t27 = O, (16) 

ri = ~62F, (17) 

, f i , =  - y - ' r iy  = , 4 ( # ~ f i y )  y, . (18) 

4 ~ ~ 2 Co T , = - / 3 f i y +  _-~ pr(ktSTy) + , 3 " Y # O ( U y ) .  (19) 
( V 7 1 )  (V ) Y 

In the l imit ,  --+ O, the momentum equation (18) implies 

ri = P ( t )  + , r io ( t ,  y )  + . . . .  (20) 

Then the lowest-order (subscript 0) approximate system describing the temperature, 
density, pressure and velocity fields is 

~ 2 .  & +(po) Uo, =0, 

P (  t ) = ~o7"o, 

. 1 4 " ( t  
Uo, = - ~ r i o y + ~ ( ~ p o  %)y, 

co ~ o , = _ e ( , ) ~ o y  + ~ (*~o~oy)y. 
(~,-- 1) ( y -  1) Pr 

The initial, boundary and matching conditions are 

(21) 

(22) 

(13) 

(24) 

t = 0; To = t5o =rio = 1, t~ o = 0, (25) 

y = 0; ;F o = 1 + Q ( t ) ,  Uo = O, t >I O, (26) 

y - - ,  oo; = 1. (27) 

In order to proceed the spatially homogeneous function P ( t )  must be found by consider- 
ing the nature of the solution in the interior core of the gas. 

3b. The core 

Heat addition at the wall causes the boundary-layer gas to expand into the container with 
a speed of O(, 1/2) as given in (10). The outer edge of the expanding boundary layer acts 
like a variable-speed piston, thus generating a similar mechanical disturbance in the core. 
It follows that the appropriate scaling transformations for velocity, density, temperature 
and pressure are 

= t~, p = 1 + ,1/2~, T = 1 + ,,/2j~, p = P ( t )  + ,,/2ri. (28) 
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These transformations can be used in (1)-(4) to show that 

P ( t ) =  1. (29) 

During the acoustic period the pressure is basically the initial value with a small 
superimposed disturbance due to the mechanical effect of the expanding boundary layer. 
The core disturbances should be compared with the O(c 3/2) corrections found in the slow 
heating case in [11]. 

If (28) and (29) are used in (1)-(4), and the limit c ~ 0. is applied, then the basic 
approximations for the disturbance variables are described by 

0o, + u0x = 0, (30) 

p0= o+ 0, (31) 

Ya0, +P0~ = 0, (32) 

~ o , + ( ~ -  1)ao = 0 .  (33) 

A Taylor-series expansion for C o = Co(T ) where T = 1 + c~/2T has been used to show that 
C, ,-  1 + O(~1/2). An appropriate combination of (30)-(33) yields equations describing 
isentropic linear acoustic wave propagation in the interior core region. For example the 
velocity field is described by 

u0,,= Uo,," (34) 

The initial conditions are 

t =  0; Uo = u0, = 0. (35) 

The latter is derived from the initial condition on the pressure and from the momentum 
equation (32). The boundary conditions will be derived from the matching condition with 
the boundary-layer solution. It is necessary at this point to return to the boundary-layer 
equations and to develop an appropriate solution. 

3c. The boundary-layer solution 

The boundary-layer equations (23) and (24) can be simplified further by using physically 
reasonable constitutive relations for viscosity and thermal conductivity, # = k = T, and by 
assuming for convenience that C o = 1. Then if (22) and (29) are used in the resulting 
momentum and energy equations it can be shown that, 

- - 1 -  a a  ( 3 6 )  U0,=  --Y P0y + 3 0 w, 

Y 
T0, = - ( V - 1 ) f i o  + ~ r T o  . .  (37) 

The appropriate initial, boundary and matching conditions are given in (25)-(27). The 
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equation describing heat transfer in the boundary-layer region, derived by combining (21), 
t~oTo = 1, (36) and (37), has the elementary form, 

(38) 

If one writes for convenience 7"o = 1 + 0,. (38) can be written as 

1 

0 t = ~ r  0yy. (39) 

The appropriate initial, boundary and matching conditions, derived from (25)-(27) are 

t = 0; 0 = 0, (40) 

y = 0; 0 = Q(t) t >~ O, (41) 

y ~ o 0 ;  0 = 0  t>~0. (42) 

The prescribed wall-temperature function Q(t) will produce an O(1) change in 0 for 
proportional variations in t if Q(t) = O(1), i.e., an order-one change in temperature 0 on 
the acoustic-time scale. 

The solution of (39)-(42), calculated by Duhamel's theorem (Carslaw and Jaeger [15]), 
can be written as 

--~-) exp(-~2)d~ (43) 

where 

2 L t - ~ , J  ' ~=2 (44) 

The velocity equation in the boundary layer is derived by combining the mass-con- 
servation equation (21) with the state equation ~0T0 = 1 to find 

floe = To,, ao(0, t)  = 0 (45) 

where 7"o = 1 + 0 and the boundary condition is found from (26). If (38) is used to replace 
the temperature-time derivative, then the velocity solution can be expressed as 

1 - 
a0 = ~--~r (T%(y, t ) -  7"oy(0, t)).  (46) 

Far from the wall Toe (y  --* oo, t) ~ 0 so that the fluid velocity is given by 

f i 0 ( Y O ~ , t ) - -  1 - - P r  T°y (0' t). (47) 

It is the boundary heat flux which determines the general character of the fluid motion at 
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the edge of the boundary layer. Equation (47) represents the most explicit statement 
possible for the piston analogy of boundary heat transfer [6]. 

A specific calculation is carried out for the wall temperature function 

Ct, t < t o 
= , t o ,  ( 4 8 )  

Q( t ) Ct o, t >~ t o 

where C is a specified constant representing the rate of temperature increase and t o is a 
given cut-off time. The solution for 0, obtained for this special function from (43), can be 
used to write the nondimensional temperature distribution as 

To = 1 + C/[(1 + 2,/2)erfc(~/) - 2(~r)-1/2~ exp(-~/2)],  t < t o ,  (49) 

and, 

T 0 = l  + Ct(1 + 2~2)[erfc(~/)-  e r fc (~ / / (1-  ,o / t ) l /2) l  

+ Ct o erfc(~//(1 - to/t  )1/2) 

+ 2Ct(~r)-1/27 ( (1 - to~t) 1/2 e x p [ -  ~/2/(1 - to~t)] 

- e x p ( - ~ 2 ) } ,  t>~t o, (50) 

where 7/is given in (44) and erfc( ) is the complementary error function [16]. 
Equations (49) and (50) can be used in (46) to find the boundary-layer velocity field 

" t ~1/2 
fto(rl, t ) = 2 C ( ~ r )  ( n e r f c ( r / ) + ( ~ r ) - l / 2 [ 1 - e x p ( - n 2 ) ] } ,  t < t  o, (51) 

t 1/2. 
rio(", t ) =  2 C ( ~ r )  {~ / [e r fc (~ / ) -e r fc (~ / (1 - to / t ) l /2 ) ]  

-t--(7/ ')-1/2[( 1 -- to//t) 1/2 exp(-~/2/(1 - t o / t ) ) -  exp(-~/2)] 

+ ( q r ) - l / z [ 1 - - ( 1 - - t o / t ) l / 2 ] } ,  t>~t o. (52) 

The velocity profile has the interesting property that 

lim fi0 = K1 tl/2, t < t o, (53) 
r/~oO 

lim f i o = K l [ t l / Z - ( t - t o ) a / 2 ] ,  t>~to, (54) 
7/--*o0 

where 

K 1 = 2C/(¢r Pr) 1/2 (55) 
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Figure 2. The time history of the speed (]o/Kl at the boundary-layer edge (7 -~ ~ )  when t o = 1. 

which can be interpreted to mean that for t < t o, the thermal expansion of the gas results 
in a continuously accelerating piston-like effect at the edge of the boundary layer as 
shown in Fig. 2 for t o = 1. This portion of the velocity profile is similar to that of the 
slow-heating case [11]. After the boundary-temperature rise cut-off at t = t 0, the piston-like 
action starts to decelerate as the velocity drops sharply and then more slowly as time goes 
on. This behavior is attributed to the decrease in the heat flux in the boundary-layer 
region after the cut-off time t o . 

The rate of heat flux at the wall is calculated to be 

8x = c-1/2 2Ck (1 + Ct) ' t < t o, (56) 

q=. t ,1 ti , 1  ) , > to. t57) 

The O(c -1/2) rate of heat flux should be compared to the O(c 1/2) value found in [11]. 
The density and pressure fields in the boundary layer can be derived from the state 

equation and (36) respectively, along with (49)-(52). The pressure perturbation for t < t o 
is given by 

Po= Cy -54-~r ((1 + 2,/2) e r f c ( , / ) - l )  - - P r  ~ + a ( t ) ,  (58) 

where a(t )  is the constant of integration representing the value fro at the wall. It cannot be 
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evaluated until the O(Q core solution is found. The asymptotic properties of the functions 
appearing in (58) can be used to find the pressure at the edge of the boundary layer, 

P o ( n  ~ ~ ,  t )  - - 2 ~ , c  p r ~ * / +  O(~/o). (59) 

The matching condition for the pressure in the core can be found by combining (10), the 
inverse of (15), (20), (29), (44) and (59) to produce 

p(x'-~O, t)= l + cl/2[ - ~ r  xt-l/2 ] +O(~),  t < t 0. (60) 

One may observe that the O(~ 1/2) correction is consistent with that used in the pressure 
transformation in (28). A similar result can be found for t > t 0. 

3d. The core solution 

The isentropic wave-propagation process in the interior region, representing the response 
of the core to the disturbance induced by the thermal expansion of the gas in the 
boundary layer, is described by (34) and (35). The appropriate boundary conditions are 
derived from the matching form of the boundary-layer solution (53) and (54) and are 
written as 

Klt /2, t < t o (61) 
x = 0 ' l ;  fiO=[K,[tl/2 (t_to)l/2], t>~t o' 

where (28) has been used. Equations (34), (35) and (61) describe the isentropic dynamics 
of a gas in a confined region to which mass is added at a rapidly increasing rate when 
t < t 0, and at a decreasing rate when t > t 0. 

A short-time, long-time and a general solution to (34) and (35) are derived in the 
Appendix. The general solution given in (A.12), is 

rio(X, t ) =  2K1( ½- x) [ t  1 / 2 - ( t -  to ) l /Z~( t -  to) ] 

K1 i m-3/2 sin(2m~rx){c°S(~m)C2( ~,,) + sin(~m)S2(~m) 
2~r m=l 

- / z ( t -  to) [cos(/3m) C2 (fl,~) + sin(fl..) $2 (tim)] }, (62) 

where ~,, = 2m~rt, tim = 2m~r(t- to), # ( t -  to) is the Heaviside step function and the 
functions C2 and S 2 are Fresnel integrals [16]. This solution provides an analytical 
description of the kind of acoustic wave pattern, found numerically by Larkin [7], 
Thuraisamy [8] and Spradley et al. [9] for a slightly different initial-boundary value 
problem. The advantage of the analytical result for the present problem, where the 
temperature rise occurs over a well-defined time scale, is that the amplitude of the acoustic 
disturbance is specifically defined. In particular from (5), (10) and (28) one can observe 
that u'/C~ = O(~ 1/2), typically O(10- 3) for standard conditions. 
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The density field can be obtained by integrating the conservation of mass equation (30) 
to yield 

= 4 :,[/3j2 _ ( / _  t0)3J2 (/_ t0/] 

K1 
m -3/2 c o s ( 2 m c r x ) ( s i n ( ~ , , ) C 2 ( ~ m ) - c o S ( ~ m ) S 2 ( ~ , , )  +T; m=l 

- # (  t - to)[Sin(f lm)CE(flm ) -- cos( f lm)S2(f l , , )]  ) .  (63) 

The remaining field variables describing the isentropic process in the core, derived from 
(30)-(33), are given by 

tS0 = V-1/~0 = (V - 1)-1J"o • (64) 

The purely time-dependent term in t50, ~r o and P0 represents the accumulated adiabatic 
compression caused by the continuous succession of compression waves sweeping across 
the core. The series summations represent the spatial distribution of acoustic disturbances 
at an instant t. In the limit each term in the series in (62) reduces to the bounded form 

m - 3 / 2  sin(2 m rrx ){sin[, ,~+ 4 ] - I t ( / - t °  )s in[  tim + 4 ]}" (65) 

The asymptotic properties of the Fresnel integrals C 2 and S z [16] have been used in 
deriving (65). It should be noted as well that the entire first term in the velocity (62) is 
O(/-1/2) in the limit t ~ ~ .  In contrast the first purely time-dependent term in (63) is 
O(t 1/2) in the same limit. 

One can observe from a combination of (28) and (62)-(64) that there are nonuniformi- 
ties in the acoustic-time asymptotic expansions when t = O(c-1). This condition corre- 
sponds to time measured with respect to the conduction time scale t" defined at the 
beginning of Section 2. In this regard the conduction time variable is defined by 

"r = ct. (66) 

The asymptotic expansion of the variables show that on the conduction-time scale, when 
ct = O(1), A T -  Ap - At) = O(1) and u = O(cl/2). Of course on the conduction-time scale, 
the conceptual model consisting of a conductive boundary layer and a mechanically-re- 
sponsive isentropic core fails to be a viable representation of reality. Rather a fully-con- 
ductive models must be constructed. 

It is to be noted that the large t estimates for the dependent variables can be used in a 
time-integrand form of the complete equation system (1)-(4) to show that nonlinear 
convection terms, neglected in the derivation of the acoustic equations in (30)-(33), have 
no accumulation effect on the linear acoustics when t = O(C1). In this respect nonlinear 
acoustic processes will not appear in the analysis. 

4. Conduction-time solutions 

The representation of the acoustic-time scale phenomena in the core during the earliest 
phase of the conduction-dominated process can be determined by developing the match- 
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ing form of the variable expansions for t ~ o¢. Equations (28), (29) and (62)-(64) can be 
combined appropriately in the limit £ ---, 0, x fixed (0 < x < 1) to obtain 

u - -£1/2 K 1 ~ m-3/2 sin(2m~rx ) sin( ~m + -~ ) - sin( Bm + + . . .  
m=l 

+ e [ K ,  to( ½-  X)T -1/2 + . . .]  +0(£3/2) ,  (67) 

~--~-K m - 3 / 2  cos(Zm~rx) p -  1 + 2Klto'r ~/2 + ... +£1/2 
1 

x + (68) 

[ T -  1 + 2(3' - 1)Kl to  rl/2 + . . .  +£1/2 (3, ~f2 K1 E m-3/2  
m=l 

×cos(2m~rx)-{cos(~m+ 4 ) - c o s ( / ~ m +  4 ) } +  " " ] +  O(£), (69) 

+ £1/2 [ 3,~- p -  1 + 23,Kito r'/2 + ... [~K1 m:l ~ m-3/2 cos(2m~rx) 

(70) 

where K 1 is defined in (55) while ~m and /3,, are given below (62). The asymptotic 
properties of Fresnel integrals [16] have been used in deriving these results. One may 
observe that the expressions for p, T and p contain an O(1)-term that varies with ~- while 
the 0(£ 1/2) term in u describes a t-dependent field which represents the acoustic 
disturbance that continues to evolve on the conduction-time scale. The O(e)-term in (67) 
represents the limiting form of the first term in (62). Since equations (68)-(70) are initial 
conditions for the long-time solution, the O(1) conduction-controlled process varying on 
the z-scale has superimposed upon it an 0(£ 1/2) acoustic disturbance varying on the 
t-scale. 

It should be pointed out that the core velocity and temperature results in (67) and (69) 
do not satisfy the boundary conditions given generally by (9). This implies that there exists 
an accommodation layer, occupying a thin region adjacent to the wall, in which the 
temperature is adjusted to the correct value. This accommodation layer is simply the 
conductive boundary layer as it evolves for t ~ ~ .  An expression for its structure can be 
written by using ¢ = £t in (50) and (52) and considering the limit ¢ ~ 0. It should be 
recalled that the boundary-layer solution given by (49)-(52) is obtained for the specific 
case when ~t and k are assumed to vary linearly with I'0. The O(1)-term in (69) satisfies a 
matching condition with the accommodation-layer solution for x ~ 0. 
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Multiple time-scale analysis is suggested by the occurrence of simultaneous physical 
processes on both long conduction and short acoustic-time scales. The following transfor- 
mations are implied by (67)-(70); 

= Z(~ ,x )  + , ~ [ p ~ ( ~ , ~ , x )  + ,  [p~(~, ,, x) + .... 
T~(~', x)  ~ TA($, t, x)  ~ T2 (~', t, x) 

(71) 

u = ,'/2vA ( , ,  t, x )  + w e ( , ,  t, x )  + , v ~ v ~ ( , ,  t, x )  + . . . .  (72) 

where • = Ct. The conduction-controlled and acoustic field variables are denoted by the 
subscripts c and A respectively. The time derivatives are written in a special form because 
~- and t are treated as though they are independent variables. It follows that in (1), for 
instance, 

~p 
(73) 

If (71)-(73) are used in (1)-(4) it is found that the equation system for the conduction- 
controlled field must be written initially in the form 

pc +(pcv~)x = - (p2, + ( p A v ~ ) ~ } ,  (74) 

5x=o, e=p~T~, (75) 

co + ~ x )  = -~cvc + ~1) Pi(~(rc)rcx)x ( . / ~  1)P¢(T¢, x (V 

_ { (~ co_ 1) [ o~( T~ + u.v.~)+ ~. (T. + u ~ .  )] + P.u~.~ } (76) 

where C o has been treated as a constant. It is a characteristic of this multiple-time scale 
method that higher-order effects always appear in each approximation to the conservation 
of mass and energy equations. In this case the terms in (74) and (76) which are enclosed in 
brackets represent source terms which depend upon the variable t and, in order that no 
secular terms appear in the conduction variables, these terms must be set equal to zero. 
The resulting equations provide formal constraints on Pz and T 2 to within arbitrary 
functions of ~" and x. The latter are found explicitly from the complete equation system for 
the third terms in (71) and (72). 

The conduction-controlled process is then described by (75) and 

pc + (pcU~)x = 0, (77) 

C°I) P~(T¢ -U~T C )=-P~U~ + (y_~)pr(k(T~)T~)x ( y -  ~ 
(78) 
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which are identical to the system used for the slow heating case in [11]. The appropriate 
initial conditions, obtained from (68)-(70), are 

r = 0; & =Tc=pc = 1, 0 < x < 1, (79) 

and the boundary conditions are given by 

x = O, 1 ; u C = O, T,, = 1 + Ct o , r > 0. (80) 

The conditions on T~ represent an impulsive increase in the boundary temperature by the 
amount Ct o. 

The acoustic field equations are found to be 

o +(ocu )x=o, pA (81) 

r0cu +pAx=0, (82) 

(3, ~ 1) pc[Ta' + UAT~*] = --PcUax" (83) 

The appropriate boundary and initial conditions are 

x = 0 , 1 ;  UA=0, TA=0 , (84) 

r ~ 0 ;  UA=-~-~-2K'4~r £ m - 3 / Z s i n ( 2 m ~ r x ) { s i n ( ~ ' + 4 ) - s i n ( ~ m + 4 ) } '  (85) 
m = l  

r ~ 0 ;  pA=pA/T= T A / ( 7 - 1 ) =  - K ,  (2)-'/----~2 ~" m- ' /2  cos(2mrrx) 
qT 

m = l  

(86) 

where (85) and (86) are obtained from (67)-(70). It should be noted that these initial 
conditions are a corrected form of those given in [11] for the analogous slow-heating case. 
In mathematical terms, when 0 < r << 1, t can be arbitrarily large. It follows that 4,, and 
fl,, may be large. Kassoy [11] ignored this point and se t  ~m = 0. Equations (85) and (86) 
imply that, from the viewpoint of conduction-time-scale processes, the acoustic field has 
existed for a long time. It follows that the acoustic frequencies found for r ~ 0 are 
determined by those found in the ancestral acoustic field evolving in the isentropic core. 

The first of (75) can be interpreted to mean that the pressure rise for the long-time 
process is spatially homogeneous. Multiple reflections of acoustic waves within the slot 
over the time r = O(1) produce this effect. A specific expression for Pc(r) can be obtained 
by integrating the mass-conservation equation (77) across the slot and using (80) and (84) 
along with the second of (75). It follows that 

(87) 
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which was also found in the case of slow wall heating [11]. This statement means that the 
pressure at any time is inversely proportional to the averaged inverse temperature. 

A considerable simplification of the conduction-controlled system is found if the 
Lagrangian variable 

y=foXp¢(r,s)ds (88) 

is employed in (77), (78) and (87). The result 

p c + p ~ U ~ = O ,  (89) 

Pc (~, - 1) T C (90) 

Pc(T) = f01Tc('t, y)dy, (91) 

is valid for C o = 1. The last term in (90) represents the effect of compressive heating 
arising from the pressure increase in a constant volume system described by (91). In a 
system with boundary heat addition where Pc, > 0, the last term in (90) acts as an effective 
heat source. These equations, along with the second of (75), (79) and (80) define a typical 
initial-boundary value problem. Once T c is computed numerically from the integro-dif- 
ferential equation constructed from (90) and (91), the pressure Pc and the density & are 
found from (91) and (75) respectively. An explicit expression for the velocity field, 
obtained from an integral of (89) and the condition at x = 0 (y = 0) in (80), 

0 fo r To(r, s)ds (92) Uc(, ,y)  = ec( , )  ' 

also satisfies the condition at x = 1, (y  = 1) automatically given the result in (91). Detailed 
numerical solutions are described in Section 5. 

The completed conduction-controlled solution can then be used in (81)-(86) which 
describes the linear propagation of acoustic waves in a slowly-varying inhomogeneous 
medium contained in a finite space. When C O = 1 these equations can be rearranged to 
show that 

UA,, = Tc(r, x)UA.x. (93) 

The boundary and initial conditions in (84) and (85) must be satisfied. It is essential to 
note that the latter is a condition for r --* 0 and not for t ~ 0. The general solution can be 
written as the real part of 

U a = ~_~ ig,,,(x; ,r)[exp(iom)-exp(i[o.,- 2m~rto])], 
m=l 

rr (94) om = )kin(r)/-t- ~ , 
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such that 

g,,,( x; O)- v/~ K1 m -3/2 
- 4~r sin 2mrrx, Xm(0)=2m~.  (95) 

The amplitude equation is given by 

Tc(T , x)g~(x; 'T) -~ ~2(' i ' )gm = O, gm(O; "t')= grn(l ; "r)=O (96) 

where primes denote derivatives with respect to x. Clearly (95) is a solution when r ~ 0 
because T C ~ 1. In fact (95) sets the absolute magnitude of the amplitude function. The 
general properties of this self-adjoint eigenvalue problem are of some interest because they 
could be used to determine how the amplitude varies with the parameter ~" in a given 
Tc(~-, x). In the case of boundary heating, Tc(r, x) >/1 and Tc (1", x) > 0 for 0 < x < 1, it 
would be desirable to know how each eigenfunction varies with ~- at any specified x 
location. Unfortunately general theorems do not appear to be available, although Sturm- 
Liouville theory [18] can be used to show that ~m(¢) increases with T when T~, > 0. Some 
indication of solution properties can be obtained for special T,,-distributions. In the case of 
a background temperature T,, = a(~-)h(x) which increases everywhere at the same rate (96) 
can be reduced to 

h(x)g~(x)+~2g,n=O, g,,,,(O)=gm(1)=O, (97) 

for ~,~(¢) = f ~ a ( ¢ )  where £,, is a constant and gm depends only on x. It follows that the 
eigenvalue is independent of ¢, although the slowly-varying wave number is not. Unfor- 
tunately (94) cannot be satisfied for nontrivial h(x). This occurs because the assumed 
form for T~ is not an admissible solution to the conduction-controlled system. However 
the result suggests that eigenvalue variation with ~- will require a spatially dependent 
temperature rise rate. In the case of T C = k2(~')(A(~ -) - x) 2, A > 1 the transformation 

can be used to convert (96) to 

g,;;(s; + X mg., = 0 

where primes denotes derivatives with respect to s. The solution which satisfies the 
boundary conditions in (96) can be written in terms of x as 

gm(X;T)=(A~A------~X)I/2 (98) 

k 2 [ 4m2~r 2 ] ~ =-~-- [1 + l n [ A ' - ~ - -  1)] " 

If A, > 0 then the eigenfunction increases (decreases) with ~" when the sine function is 
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positive (negative). The wave number A m is an increasing function of r. This type of 
behavior occurs for a spatially-dependent rate of temperature increase defined by T c. Here 
again the result in (98) cannot satisfy (95) because T c does not have the correct behavior 
for • ~ 0 (T~ ~ 1). Nevertheless the results show that for a fairly general background-tem- 
perature distribution, not unlike that which might be found in a conduction-dominated 
process, amplitude variation can occur. 

Perhaps the best estimate of eigenfunction behavior, short of a full numerical calcula- 
tion, can be obtained for a large-wave-number approximation to (96). A multiple-variable 
method [20] related to the WKB-approximation can be employed for m >> 1 to find 

gin(x, ~,,,; r) - '-K------~1 '[f Tcl/2(r, x) sin ~m + O(m-5/2) ,  
4trm3/2 

(99a) 

[ r l  d r  ]-~ 
(99b) 

f0 ~ d r  (99c) 

where x and ~,, are treated as independent variables. Here for To, > 0, 0 < x < 1, the 
eigenfunction increases (decreases) with r when the sine function is positive (negative). 
The wave number ~m is explicitly increasing with T. Equation (95) has been satisfied to 
obtain a specific amplitude! Equation (99) can be used to show that each of the 
large-wave-number modes of U A can be written as a linear superposition of four travelling 
waves. The amplitude of each of these waves increases with r like [Tc(r, X)] 1/2. 

Once U A is found, the remaining acoustic variables can be obtained from (81)-(83). For 
example the acoustic pressure field is given by the real part of 

oo 

pA =-vet(r) E 
m=l 

'g x(x; ] ~km(,r ) [ ei(x ' t+~r/4) _ ei(X~+~r/4-2m~rto)]. (100) 

The large-wave-number modes of (100) can be written in a first approximation as 

,cos m/ 21/2Kl'Y pc('r ) 7 ~ c ° S ~  Amt +'-4 ) -c°s( ~kmt 2m~rt° 
1] (101) 

given the results in (99). Once again these modes can be split into four travelling waves 
with amplitudes that increase like Pc(z). 

It should be noted that the wall boundary condition for (83) given in the last of (84) 
cannot be satisfied because UAx(% t, 0) ~: 0. This difficulty arises because of the absence of 
conductive heat transfer in (84) which would allow for accommodation of the acoustic 
temperature field with that at the wall. Rott [13] has described the structure of such layers 
in detail. 
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5. Numerical results 

A numerical solution of the integrodifferential equation for T e, obtained from (90) and 
(91), subject to the initial and boundary conditions in (79) and (80) has been developed by 
using the method of lines [19]. Details of the procedures employed can be found in 
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Radhwan [12]. In Fig. 3 the spatial temperature distribution is shown as a function of the 
condition time variable • when Ct  o = 1, y = 1.4 and Pr = 1. The inverse of the Lagrangian 
transformation in (88) has been used to produce results in the physical variable x. Only 
half the slab is depicted because the basic problem is symmetric. For • << 0.01 the 
temperature field has a boundary-layer structure near the wall. The spatially homogeneous 
temperature rise in the core for small • due to compression, is in very close agreement with 
the first two terms in (69). When • = 0.15 the temperature has almost reached the final 
equilibrium value. 

The effect of gas motion on the heat-transfer process is to accelerate the approach to 
equilibrium. This can be seen in Fig. 3 where the temperature profiles for an equivalent 
rigid material [15] are shown for , =  0.03 and 0.15. These profiles lag behind the 
analogous gas solutions by a substantial amount. The enhancement of heat transfer arises 
from convention of energy by the small (10 -6) Uc-field. Larkin [7] and Spradley et al. [9] 
observed very similar effects in their related problem. 

The spatially-homogeneous pressure rise, given in Fig. 4, is found from (91). The early 
increase is predicted almost exactly by the ,-dependent terms in (70). The approach to the 
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final equilibrium state occurs when the temperature distribution in Fig. 3 is nearly 
spatially uniform. 

The velocity distribution driven by thermal expansion is shown in Fig. 5. For suffi- 
ciently short times the boundary-layer structure is apparent. The maximum lies near the 
heated boundary. Beyond the boundary layer the velocity decays like the O(E) term in the 
core solution in (67). Until about ~-= 0.02 mass is moved toward the centerline. The 
location of the velocity maximum moves to the right as the magnitude decreases. 
Eventually flow reversal develops as the displaced mass moves back toward the wall. 

6. Conclusions 

The physical consequences of the mathematical modelling can be considered by applying 
the results to a typical inert gas. If we assume that the slab is filled with air at P~ = 1 atm, 
T~ = 25°C and that L'  = 10 cm, then the acoustic and conduction times are tj~ = 3.01 × 
10 -4 s and t~ --- 442 s respectively. For Pr = 0.76 the small parameter c = 4.77 x 10 -7. 

During the acoustic time period, when the wall temperature increase by a significant 
factor relative to the absolute initial value, the conduction boundary-layer thickness is 
about 7 x 10-3 cm. The power added to that gas layer is characterised by 107 W//m 2. Gas 
expansion in the boundary layer, arising from the temperature rise induces a maximum 
speed of about 20 cm/s.  The resulting mechanical disturbance at the boundary-layer edge 
causes the continuous generation of compressive acoustic waves in the core of the slab. 
Eventually these accumulate into a bulk velocity distribution with a maximum value of 
about 20 cm/s  and a spatially-homogeneous compression perturbation which is typically 
10 .3 Pd. 

Further evolution of the heat-transfer process on the conduction-time scale is associ- 
ated with significant spatial variation of temperature and density. The associated major 
pressure increase is spatially homogeneous because a weak acoustic field is able to smooth 
disturbances during the long conduction time period. As long as the finite boundary-tem- 
perature increase occurs entirely during the acoustic-time period, the primary velocity field 
is that evolving from the previously-generated acoustic field which is characterised by a 
speed of 20 cm/s.  The acoustic waves now move through an inhomogeneous slowly-vary- 
ing background. As a result the generalised Fourier-decomposition of the evolving 
acoustic field is characterised by slowly-varying amplitudes and wave numbers. The speed 
associated with the much weaker bulk gas deformation process is typically 1.5 x 10 .2 
cm/s .  This slowly-varying field displays flow reversal resulting from the need to conserve 
mass in a variable density field. 

A heat-addition rate of substantial magnitude occurs briefly at the boundary. The 
power added, typically 103 W//m 2 generates an effective piston Mach number (see for 
example (47)) of only 10-3. This value is sufficiently small to assure that the linear wave 
front generated initially in the core cannot become nonlinear within the container during 
the time periods of interest. This shows in a quantitative manner in the context of a finite 
system that a more substantial energy pulse is necessary to generate weak shocks in a 
finite container. For the heat-addition mechanism considered in the present work (conduc- 
tion) sharper pulses are required. This effect will be discussed in a subsequent paper [21]. 

The amplitude of the acoustic pressure field initiated early in the process and which 
continues to evolve throughout the events is O(10-3). The corresponding intensity is a 
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factor of 10 3 larger than the standard intensity of I0 = 1 g W / c m  2 Normal speech levels 
are associated with 10I 0 . In this regard one should recognize that rapid boundary heating 
of a compressible gas, or for that matter an equivalent localised heat release due to 
combustion, can be effective source of rather painful levels of noise generation. 

Appendix 

Laplace-transform methods were employed to find the solution to (34), (35) and (61). The 
transformed solution is obtained for 0 ~< x ~< ½ as 

U(x,  s) = L[t~o] = K2 (1 - e-t°s) sinh(½ - x ) s  (A.1) 
s 3/2 sinh(s/2)  

where 

K1 ~1/2 
K2=  2 

The symmetry property of the problem has been exploited in obtaining (A.1) where the 
velocity is assumed to vanish at the mid-plane (x = ½). The short-time (s -~ 0¢) transform 
is given by 

U(s, x )  - K2s-3/2e -sx 

and can be inverted [16] to give 

fro(X, t) = K , ( t  - x )  1/2, 0 < t < ½. 

(A.2) 

A solution for large times, obtained from the inversion of the long-time transform (s ~ 0), 

is 

U(x,  s ) -  2K2,o( ½ - X)S -1/2 + O(S1/2),  

lim t~0(., , t ) -  Klto( ½-  x ) t  -1/2 + " ' ' .  

To find the general solution one can write (A.1) as 

sinh(½ - x ) s  
U( x, s) = K 2 s3/2 sinh(s/2)  

The first term can be written as 

F =  K,?I(S)?2 (s)  

where 

] , ( s )  = s - ' /2 ,  ]2(s ) = sinh(½ - x ) s  

s i n h ( ½ - x ) s  e -'°s. (A.6) 
K2 s 3/2 sinh(s/2)  

s s inh(s/2)  " 

(A.4) 

(A.5) 

(A.7) 

(A.8) 

(A.3) 



155 

(A.11) 

Fresnel integrals [16]. The 

The Laplace inverse of )~1 (S) is 

L - I [ L ( s ) ]  = I / v ~ .  (A.9) 

The function)?2(s ), inverted by using the residue theorem [17], is given by 

f2( t )  = 2 (½-  x)  + ~ ( -  1 ) "  sin[2m~r(½- x)] cos(2m~rt). (A.10) 
m~r 

m = l  

The convolution theorem is used to obtain the inverse of the function/~ in the form 

KI 
3/2 sin(2m~rx) F(x ,  t)  = 2K1(½ - x ) t  1/2 2~r m -  

m = ]  

X [cos(~,,,)C2 (~,,) + sin(~m)S2(~m)] 

where ~,, = 2m~rt and the functions C 2 and S 2 represent 
Laplace inverse of the second term (A.6) is the same as (A.11) except that t is shifted by t 0. 
Collecting the Laplace inverse of those functions, one can write the inverse of (A.1) as 

Cto( X, t ) = 2 K l ( ½ -  x ) [ t  1/2 - ( ' -  to)l/21.t( t -  /o)] 

K1 
£ m -3/2 sin(2mTrx)(cos(~m)C2(~m ) + sin(~m)S2(~,, ) 

27r 
r n ~ l  

- t z (  t - to)[COS(flm)C2(flm ) + sin(flm)S2(flm)] } (A.12) 

where fl,, = 2m~r( t -  to) and/~(t - to) is the Heaviside step function. 
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